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Abstract

When a microwave field shines on a ferromagnet under an external strong uniform magnetic field, the
ferromagnet can absorb the microwave power if the wave’s frequency is close to the Larmor frequency.
This is the ferromagnetic resonance (FMR) effect. When the ferromagnet is placed inside a cavity, the
FMR can be coupled to the electromagnetic modes of the cavity, leading to an avoided crossing. In
this experimental project, we observe this phenomenon with YIG ferromagnets after characterizing all
the elements of the setup individually. We provide a numerical simulation in good agreement with the
experimental results and discuss the limits of our experiment.
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Introduction

Ferromagnetic resonance was first observed accidentally by V. K. Arkadiev in 1911. After the discovery of Larmor
precession resonance for magnetic moments, enthusiasm built up around magnetic resonance phenomena in general
(nuclear magnetic resonance, electron magnetic resonance, etc). Later independent observations of FMR by J. H. E.
Griffiths [1] and E. K. Zavoiskij confirmed this phenomena but it wasn’t until Kittle’s 1945 seminal article [3] that
a theory interpreted FMR experimental results successfully. An exhaustive study of FMR provides information on
the magnetization, magnetic anisotropy, relaxation times, as well as the damping in the magnetization dynamics.
Today, FMR is mainly used as a spectroscopic technique to probe small magnetic samples [4].

In this project, we will investigate this phenomena in a prototypical setup. A small ferromagnet is placed inside
a microwave cavity. An external magnetic field generated by an electromagnet induces the precession of the spins.
The sample interacts with incident microwaves and absorbs part of the field. It is key to interface properly the
instruments in order to acquire transmission spectra and compare them to theoretical predictions.

1 Materials and theory

1.1 Ferromagnetic resonance (FMR)

Ferromagnetic resonance results from the coupling of an electromagnetic wave and the magnetization M⃗ of a ferro-
magnetic material. To describe it, we will follow Kittel’s approach [2]. Consider a single crystal of a ferromagnetic

material of magnetization M⃗ in an external magnetic field H⃗ with two contributions: a strong uniform and static
field Hz and an incoming microwave field Hx of angular frequency ω propagating in the (Ox) direction. This field
exerts a torque on the magnetization:

∂M⃗

∂t
= γ

(
M⃗ × H⃗

)
(1)

where γ is the gyromagnetic ratio. This causes the magnetization to precess around the DC field. Under the
assumptions of a single ferromagnetic domain and neglecting the magnetic anisotropy forces, this set of differential
equations is solved and the magnetic susceptibility χx = Mx/Hx is found to be:

χx =
χ0

1− (ω/ω0)
2 (2)

where χ0 is the static susceptibility which depends on the biasing field and ω0 is the Larmor angular frequency.
This susceptibility becomes infinite at resonance when ω = ω0. In practice, the microwave power is absorbed by the
precessing magnetization and then lost as heat: this causes the resonance to have a finite value and a given width.
The outgoing microwave field is strongly attenuated at resonance: we expect the power loss to be proportional to
the susceptibility, and therefore to be a Lorentzian centered on ω0 of a certain width. In his article, Kittel treats
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this relaxation phenomena purely phenomenologically.

In a later article [3], Kittel extends the theoretical considerations mentioned previously. He justifies that the
Larmor frequency ω0 depends on the geometry of the crystal, its orientation and its shape. He provides a general

formula generalizing the previously given ω0 = γ (BzHz)
1/2

. He also mentions that a quantum mechanical treatment
of the problem by Van Vleck leads to the same resonance conditions as his classical arguments.

1.2 FMR in a microwave cavity

Even if the classical picture of FMR provides precious insights into this phenomenon, a quantum approach is needed
to understand its coupling to cavity modes. FMR is viewed as a spin wave in this approach, which can exchange
excitations with an electromagnetic wave. If we consider a system formed by a single cavity mode and the atomic
spins of the ferromagnet, this exchange phenomena is described in [5] by the Hamiltonian:

Ĥ/h̄ = ωcâ
†â+ gµBB

eff
z Ŝz + gFMR

(
âŜ+ + â†Ŝ−

)
(3)

where ωc is the cavity mode angular frequency, â and â† the annihilation and creation operators for the mode, g

the electron’s g-factor and
ˆ⃗
S the collective spin operator for the ferromagnet. We write S the total spin norm. By

re-writing the spin operator in terms of a Holstein-Primakoff boson in the limit of low-lying excitations:

Ŝ+ =
√
2Sb̂† and Ŝ− =

√
2Sb̂ (4)

we can rewrite the Hamiltonian as:

Ĥ/h̄ = ωcâ
†â+ ω0b̂

†b̂+ g̃
(
âb̂† + â†b̂

)
(5)

The introduction of the bosonic operators b̂ and b̂† allows us to introduce a quasi-particle, the magnon, associated
to the spin waves. The eigenvalues of b̂†b̂ is the number of such magnons in the ferromagnet. The right term of the
Hamiltonian accounts for the fact that a magnon can be destroyed if a photon in the mode is created and conversely,
the ferromagnet can absorb a photon by creating a magnon. g̃ describes the strength of the cavity-magnon coupling.
The states |nphot, nmag⟩ are not eigenstates of Ĥ. Therefore, when we vary B and consequently ω0, the FMR and
the cavity modes resonance cross one another. We expect to see an avoided crossing of the eigenenergies. This is
the phenomenon that we ultimately want to observe in this project.

2 Setup and methods

2.1 Setup

Figure 1: Setup to acquire transmission spectra. The RF source generates two microwave (MW) electronic
signals, one going through the MW cavity and the other going directly to the mixer. ∆f = fA − fB is fixed to
10 MHz, while fA varies from 2 GHz to 12 GHz. The capacitors C1 and C2 protect the mixer by filtering out
an eventual constant voltage. The mixer down-converts the signal of interest coming into the RF port to obtain
a 1 MHz signal. The RedPitaya acquires around a hundred periods, performs and analog/digital conversion. A
computer then computes the standard deviation (std) of the sinusoidal signal, proportional to its amplitude. This
amplitude is itself proportional to the transmission of the system {cavity + mixer} assuming that the source power
is constant during an acquisition
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The goal of this project is to observe the coupling of ferromagnetic resonances and cavity modes. We will first
describe the setup used to observe this effect (Fig. 1). We will then provide details about the successive steps we
took to correctly assemble the experiment.

We place a small YIG ferromagnet inside a rectangular microwave cavity (the exact placement of the ferromag-
net in the cavity will be discussed later). YIG is actually a ferrimagnetic material. Such materials have populations
of opposing spins as in antiferromagnets, but the magnetic moments are unequal in amplitude, giving rise in practice
to a ferromagnetic material. The cavity is placed between the two plates of an electromagnet which generates a
normal uniform magnetic field. We send microwaves through the cavity generated by the RF source (port A) which
frequency fA may vary in the range 2− 12 GHz. Source B generates a microwave signal of frequency fB = fA−∆f
where we have set ∆f = 10 MHz. The output of the cavity and the reference signal are mixed in order to produce
a signal of frequency ∆f = 10 MHz which the RedPitaya can detect. The capacitors protect the mixer by filtering
out an eventual DC component of the voltage.

We interface the RF source, the electromagnet and the RedPitaya with a computer in order to acquire the
transmission of the microwaves depending on the externally imposed magnetic field and the microwave frequency.
In the following parts, we will investigate in detail the effect of each component of the setup in order to finally
understand the collective behaviour of the system under investigation.

2.2 Characterization of the cavity

We first estimated the theoretical selected modes for an empty microwave cavity, that we then compared to a
transmission spectrum. We were given two rectangular copper cavities: a large one of dimensions 50× 35× 5 mm
and a small one of dimensions 50 × 18 × 5 mm. If the cavities were perfectly conducting and without geometric
defects, we would expect the eigenfrequencies of the cavity modes TEmnl and TMmnl to be given by:

fmnl =
c

2

√(m
a

)2

+
(n
b

)2

+

(
l

d

)2

(6)

with m,n, l being the mode numbers and a, b, d being the corresponding cavity dimensions. For our cavities, d ≪ a, b
so the modes with non zero l have frequencies too high to be observed in our experiment.

In practice, the cavity has losses. In a transmission spectrum, we expect the resonances to have a certain width:
this width is larger for modes which have more losses (or equivalently, a lower quality factor). We thus expect a
transmission spectrum composed of some Lorentzian peaks which center frequencies are given by Eq. (6).

These measurements are important to later study the coupling of the FMR to the cavity resonances. Indeed,
this coupling only occurs when the cavity and the ferromagnet are close to resonance. Its strength depends on the
position of the magnet inside of the cavity: it is stronger if the magnet is positioned on a vibration antinode of a res-
onance frequency. We must therefore associate each resonance frequency of the spectra to a eigenmode of the cavity.

To measure the spectrum, we use the same setup as depicted in Fig. 1, without the ferromagnet nor the mag-
netic field produced by the electromagnet. We make the incident frequency fA vary for fixed incident power PA = 6
dBm. The signal to the local oscillator always has the same power PB = 10 dBm since it must match the desired
operating power and a frequency fB = fA − ∆f . The RedPitaya acquires around 100 periods of the sinusoidal
down-converted signal, sends the buffer to the computer. The standard deviation of the signal estimated by the com-
puter is proportional to the transmission of the system {cavity+mixer}. The spectrum we obtain is shown in Fig. 2:

Let us make a few remarks. Firstly, we find few sharp and distinct resonances: the blue spectrum is noisy. The
well-resolved resonances in the insets validate the detection method and the chosen resolution. After much trouble-
shooting, we have determined that the poor quality of the spectrum seems unlikely to come from a problem in the
detection algorithm or an instability of the generated frequency. We suspect the re-soldering of the antennas to
play an important role in varying spectra. Secondly, the theoretical expected resonance frequencies do not perfectly
match the measured ones. While some theoretical resonances are close to the observed ones, others simply do not
have a match. The small misalignment for observed frequencies may emerge from an oversimplification of the cavity
geometry (in reality, its corners are rounded) and imperfections in the reflecting surfaces of the cavity. Thirdly, we
were bothered by the sluggish transmission of the buffer from the RedPitaya to the computer which slowed down
acquisitions.

An observation hard to interpret is that a transmission spectrum taken with a ferromagnetic sample looks
extremely sharp. The different resonant frequencies are clearly resolved and the noise decreases significantly. How-
ever, some resonances disappear with respect to the previous spectra and other resonance frequencies are shifted
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Figure 2: Large cavity transmission spectra and Lorentzian fit. The theoretical resonance frequencies of
the large cavity (in orange) are in partial accordance with the blue spectrum, but not with the purple spectrum
acquired 1 month later, with the medium-sized magnet in the cavity. The frequency on the x-axis corresponds to
fA. The insets focus on the persistent resonances of both spectra. The Lorentzian fit on the blue curve gives the
parameters: f0 = 9.9435 GHz and ∆f = 3.2 MHz the full width at half maximum (FWHM)

by values in the range of 50 − 100 MHz: we imagine that the presence of the magnet has had an influence on the
mode structure of the cavity.

2.3 Calibration of the magnetic field

For the FMR to occur, an external uniform magnetic field must be imposed to the ferromagnet. We use an electro-
magnet to produce such magnetic field, that we calibrate before making any FMR measurements. Indeed, only the
current going through the solenoids can be controlled. We relate this quantity to the longitudinal magnetic field
B⃗ = Be⃗z, ie to obtain the curve B = f(Icommand).

The electromagnet is controlled through ethernet cable with a Delta Elektronika DC Controller. Using the
MLX90251 Hall sensor provided, we first manually determine the relationship between the physical current com-
mand Ireal (front potentiometer of the DC generator) and the generated magnetic field. We then relate the computer
SCPI command Icommand to physical current command Ireal. We proceeded in two steps to make sure we don’t go
over the 16 A current limit of the electromagnet. The final calibration curve is plotted in Fig. 3.

We observe that the magnetic field is very well described by an affine function up to 800 mT before saturating.
The magnetic fields needed in the following, below 600, mT can be obtained in the affine regime. For this cali-
bration, we make sure to keep a separation between the two parts of the electromagnet equal to the width of the
cavity, such that the magnetic field intensity is constant for all experiments. We place the Hall sensor at the center
and orient it so that the measured signal is the highest, corresponding to the real magnetic field value.

2.4 Characterization of the ferromagnet

Before studying the coupling of the ferromagnet to the cavity modes, we must study the ferromagnet alone to find
its resonant frequencies. In order to do so, we place a ferromagnet on the central stripe of a coplanar waveguide
(CPW), around the center in the longitudinal direction. The ferromagnet is held in place using tape. We place the
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Figure 3: Magnetic field calibration The calibration was performed manually in two different runs to verify it
could be well reproduced. The generated magnetic field is an affine function up to 800 mT, after which the magnetic
field saturates.

waveguide at the center of the electromagnet while making sure that the separation between the two parts of the
electromagnet remains equal to the width of the cavity. We connect one end of the waveguide to the microwave
source A and the other end is connected to the RF port of the mixer. At a given frequency fA and magnetic field
B, we can thus acquire the transmission of the system.

Since the resonance frequency of the FMR depends on the external magnetic field, we sweep simultaneously the
microwave frequency fA and the external magnetic field B, and measure the transmission of the system. We suspect
the electromagnet to take more time than the RF source to stabilize, especially when switching from maximum field
intensity to no field. We therefore choose to sweep the frequency over the selected range for each magnetic field
intensity, and wait 10 ms for the field to stabilise between each frequency sweep. We acquired transmission spectra
for the three YIG samples at our disposal, all differed in size. The results are shown in Fig. 4.

2.5 Coupling of the FMR to the cavity modes

Now that the different components are characterized alone, we bring them together in the setup depicted in Fig.
1. We choose to study the small ferromagnet since the avoided crossing is better observed when the resonances are
narrow. In Fig. 4, we can clearly see that the width of the resonances is the smallest with this sample. We glue
the ferromagnet to a wall of the cavity. In order to maximize the coupling between the FMR and a cavity mode,
we have to place the ferromagnet at the node of the cavity mode. We first identify the observed resonances to the
expected modes, estimate at the profile of the considered mode and place the ferromagnet in consequence. However,
since the theoretically expected resonances do not match the experimental spectrum, we cannot rigorously apply
this method. Instead, we look at the spatial profiles of the lowest frequency modes and find a spot close to a node
of several modes in order to maximise our chances of observing an avoided crossing.

To observe avoided crossings, we acquire transmission spectra at the resonant frequencies of the cavity around
the corresponding value of B for the FMR. We increase drastically the resolution from Fig. 4.

3 Results

3.1 FMR outside the cavity

In this section, we comment the results of the transmission spectra of the different ferromagnets on the CPW.
Several interesting features can be noticed from this figure. First, we see ”horizontal stripes” in every spectrum.
This can be explained thanks to the first spectrum were there is no ferromagnet on the CPW: the transmission of
the microwaves are frequency dependant. This may be due to the transmission frequency response of the CPW or
the mixer.

Let’s mention that, as expected, we see for each frequency a pronounced decrease in transmission around some
value of B: this is indeed the FMR phenomena described previously. The resonance frequency changes as a function
of B: by changing B, we modify the Larmor frequency of the ferromagnet.
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Figure 4: FMR transmission spectra without coupling to the cavity. Transmission spectra for ferromagnets
of different sizes are plotted. The transmission of the waveguide alone is also plotted to understand the stripes
observed. The different acquisitions weren’t taken with the same source power nor resolution, so we cannot compare
the absolute transmission values between plots. For each spectrum with a magnet, we fit each line with a Lorentzian
fit and mark the center of the Lorentzian in orange. These curves are not represent for the small and medium magnet
for visibility purposes. We then fit the curve of the centers by an affine fit (red).

Then, the slope of fres(B) depends on the sample. In the theoretical investigations of FMR, an important
assumption is than the sample is composed by a single crystal and forms a single magnetic domain, which is cer-
tainly not the case for our samples. Furthermore, the relative orientation between the microwave field and the
sample orientation plays an important role, but it is a variable we do not control in our experiment. Hence, we
cannot apply the general formulas giving fres(B) in our particular case. Furthermore, these formulas do not take
into account the size of the samples. We thus find it difficult to understand the differences observed between the
different samples. It may result from a difference of orientation of the samples with respect to the magnetic field in
the different acquisitions or more subtle effects can play a role. We also observe that the width of the resonances
increases with sample size. One hypothesis to explain this could be the following: in a large sample, there are
several crystal domains: each one of them will be oriented in a different direction with respect to B⃗. Therefore,
their resonance frequency will be slightly modified, accounting for a broad dispersion in fres. But we also know that
this width is related to the damping mechanisms. By studying these mechanisms in more detail and specifically
their dependence with size and frequency, we could understand our first observation and also that the frequency
width of the resonances increases with the resonant frequency.

We also notice that, at fixed frequency, there are two values for the magnetic field for which we observe an
absorption resonance. However, we have no theoretical explanation for the low magnetic field value.

3.2 Coupling to the cavity

When the small ferromagnet is placed inside the cavity, we observe the anti-crossing of the resonant frequencies of
the ferromagnet (Fig. 5). According to the large cavity transmission spectrum, there is a resonant frequency at
f0 = 9.943 GHz around which transmission sharply increases. We recover this observation in the spectrum below
when the external magnetic field is either small or large compared to B0 = 275 mT. When the magnetic field
goes through this value, we see that the transmitted frequencies either increase when B < B0 or decrease when
B > B0. Indeed, the FMR and the cavity resonances are coupled in this regime, so that the resonant frequencies
(corresponding to the eigenfrequencies of the dressed Hamiltonian (Eq. 5) repell each other. When B < B0, the
FMR resonant frequency is lower than the cavity mode: when the frequencies repell each other, the frequency
corresponding to the transmitted microwave increases. Conversely, when B > B0, the FMR resonant frequency is
larger than f0 so that the dressed cavity mode has a lower frequency. When the two eigenfrequencies are far apart,
we recover that the eigenstates of the Hamiltonian can be very well approximated by the uncoupled eigenstates of
the FMR and the cavity.

We also perform a numerical simulation of the Hamiltonian in Eq. 5, fine-tuning the parameters to fit the
experimental data exhibiting the avoided crossing. The Hamiltonian 5 is solved using Qutip, then the eigenfre-
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quencies are artificially broadened using a Lorentzian fit of fixed amplitude and width for any magnetic field or
eigenfrequency value. These ’universal’ Lorentzian parameters are parameters of the fit, along with ωc, ω0, g̃, γeff
and Boffset. Fig. 4 assures us that, in the considered magnetic field range, ωc = γeff (B − Boffset) (slope of the
ferromagnetic resonance).

The fit of the numerical simulation outputs a ferromagnetic resonance slope coherent with the estimations from
Fig. 4 .

Figure 5: Coupling of the ferromagnet to the cavity One recognises an avoided crossing (anticrossing) be-
tween both resonance frequencies: the cavity resonance (horizontal line) is perturbed by the ferromagnet resonance
(diagonal line, Fig. 4, small ferromagnet). The Hamiltonian (5) was simulated with the python package QuTiP.
The Lorentzian fit was implemented with Scipy, with the model parameters: g̃ = 59.4± 0.1 MHz, γeff = 30.5± 0.1
MHz/mT, Boffset = 82± 11 mT. The large uncertainty on Boffset is due to the small magnetic field and frequency
window, far from the origin. The value for γeff is coherent with the fit in Fig. 4 for the small ferromagnet
(γeff = 33MHz/mT).

Conclusion

In this experimental project, we have assembled a setup to observe FMR and its coupling to a microwave cavity’s
modes. By interfacing the electronics with a computer, we have acquired transmission spectra for varying mi-
crowave frequency and external magnetic field. We have observed cavity resonances, FMR in ferromagnetic samples
of varying size and finally the expected avoided crossing when both the cavity and FMR are on resonance. Some
experimental results are well corroborated by a numerical simulation.

Our experiment could be improved in several ways. First of all, the electronics used in the detection setup were
sub-optimal. Even though the RedPitaya STEMLab card offers a straightforward computer connection, the trans-
mission of the buffer to the computer was an order of magnitude slower than the signal measurement itself. This
communication speed limited in practice our measurements’ resolution due to time constraints. To solve this issue,
one could compute the standard deviation of the signal locally on the RedPitaya. Furthermore, the RedPitaya’s
maximum sampling rate is 150 MHz, very far from the GHz range of the experiment. We had no choice but to use a
mixer to perform the down conversion of the signal going through the cavity, even though this electrical components’
general influence can hardly be taken into account. Its datasheet does not mention the relation between the power
or the phase in the outgoing IF port with respect to the ingoing signals in the RF and LO ports. We believe this
may be linked to the horizontal ’stripes’ of Fig. 4 , preventing us from measuring absolute transmission instead of
the standard deviation of the output voltage. An ideal solution would be to use a computer interfaced network
analyser as in [5].

Then, the spectra in Fig. 2 were not always composed of distinct peaks, while some observed peaks did not
match the theoretical resonance frequency values. Hence it was impossible to associate a clear spatial profile to a
given resonant frequency. As mentioned earlier, this has an influence on the optimal ferromagnet position inside of
the cavity. For example, we were unable to distinctly observe the avoided crossing for the low resonant frequencies
between 4 and 6 GHz.
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Finally, while crystalline orientation plays an important role in such experiments [5], we did not control that
parameter. We were not sure on whether the samples we used were formed of a single crystal or several sectors with
different orientations. Even though our setup allows to observe certain phenomena associated to FMR, a better
designed setup could allow us to unveil more subtleties about this phenomenon and extract more information about
our ferromagnetic samples.
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